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Abstract— We model parking in urban centers as a set of
parallel queues and overlay a game theoretic structure. We
model arriving drivers as utility maximizers and consider two
games: one in which it is free to observe the queue length and
one in which it is not. Not only do we compare the Nash induced
welfare to the socially optimal welfare, confirming the usual
result that Nash is worse for society, we also show that by other
performance metrics more commonly used in transportation—
such as occupancy and time spent circling—the Nash solution
is suboptimal. We find that gains to welfare do not require
everyone to observe. Through simulation, we explore a more
complex scenario where drivers decide based the queueing game
whether or not to enter a collection of queues over a network.
Our simulated models use parameters informed by real-world
data collected by the Seattle Department of Transportation.

I. INTRODUCTION

In recent years, congestion of surface streets is becoming
increasingly severe and is a major bottleneck of sustainable
urban growth [1]. Studies indicate that parking-related con-
gestion on arterials in U.S. cities can range from 8–74% [2].
This creates an unique opportunity for municipalities to
mitigate congestion via parking. Yet, there seems to be
a lack of understanding of the fundamental relationship
between congestion and parking. Consequently, the problem
of smart parking has received significant attention from both
academia and government. Numerous forecasting models
have been developed to predict parking availability at various
timescales [3], [4] and different control stategies have been
proposed to keep parking occupancy at target levels [5], [6].

Pricing, both static and dynamic, is the main tool used to
control the parking system. A major difficulty in developing
effective pricing strategies is the asymmetry of information
between parking managers and drivers. The consequence of
which is that price signals are often ignored by the drivers,
leading to inefficiencies. A case in point is the parking pilot
study, SFpark, conducted by the San Francisco Municipal
Transportation Agency [7] in which drivers changed their
behavior only after the second price adjustment because
of a spike in awareness of the program [8]. Due to the
replacement of coin-fed meters by smart meters, people
are actually less cognizant of the cost of parking [9]. This
motivates a key focus of this paper: in contrast to considering
pricing as the main incentive, we study how information
access impacts behaviors of drivers.
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We model parking as system of parallel queues and impose
a game theoretic structure on them. Each of the queues
represents a street blockface. The queue itself is abstractly
modeled as the roadways and circling behavior is the process
of queueing. The parking spots along blockfaces are the
servers in the queue model. Drivers are modeled as utility
maximizers deciding whether to park based on the reward for
parking versus its cost. We consider two game settings: in
the first, drivers observe the queue length and thus, make an
informed decision as to whether they should join the queue
to find parking or balk, meaning they opt-out of parking
and perhaps choose another mode of transit. In the second
case, drivers choose to balk, join without observing, or pay
to observe the queue after which they join or balk as in the
setting of the first game.

We characterize the Nash equilibrium and the socially
optimal solution in both cases and show, unsurprisingly, that
there are inefficiencies in comparing the two. What is more
interesting, is that we show that by other metrics—congestion
(time circling) and occupancy—which are more often used
by planners, the Nash solution is also inefficient and much
more so than the socially optimal solution. We also develop
a simulation tool that investigates how different parameter
combinations such as network topology and utilization (oc-
cupancy) can impact wait time (congestion) and welfare.

The remainder the paper is organized as follows. In
Section II, we outline the basic queuing framework applied to
urban parking. In Sections III and IV, we describe the free
observation and costly observation queuing game, respec-
tively. We present a queue–flow network model in Section V
and show through simulations the utilization and wait time
for different Nash and socially optimal equilibria. Finally, in
Section VI, we make concluding remarks and discuss future
directions.

II. QUEUEING FRAMEWORK

We use an M/M/c/n queue to represent a collection of
block faces that collectively have an on-street parking supply
of c � 1 (for background on queues see e.g. [10]). The num-
ber n represents the maximum number of customers in the
system including those customers being served (i.e. parked)
and those circling looking for parking. We make the follow-
ing assumptions: The arriving customers form a stationary
Poisson process with mean arrival rate � > 0. The parking
duration for a customer parks is assumed to be exponential.
The servers are modeled as the c � 1 parking spots with
mean service rate µ > 0. Waiting customers are severed in
the order of their arrival.
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Define the traffic intensity ⇢ = �
cµ and let Qn(t) be

the number of customers in the system at time t. Then
{Qn(t)}t�0 is a continuous time, ergodic Markov chain with
state space {0, . . . , n}. The stationary probability distribution
of having k customers in the system is given by

pk(n) = dkPn
k=0 dk

, 0  k  n, (1)

where

dk =

(
(⇢c)k

k! , 0  k  c � 1
(⇢c)c

c! ⇢k�c, k � c
(2)

Let Zk = X + Yk be a random variable that measures the
time spent in the system when the state of the system is k
and where X is a random variable representing the service
time and Yk is a random variable representing the time that
the customer spends in the queue. The random variables X
and Yk are independent, X has an exponential distribution
with density f(t) = µe�µt, and Yk (for k � s) has a gamma
distribution with density

gk(t) = (cµ)k�c+1

(k�c)! tk�ce�cµt. (3)

If h(t) is the waiting cost to a customer spending t time units
in the system, then the expected waiting cost to a customer
who arrives and finds the system in state k is given by
E[h(Zk)]. While we can consider non-linear waiting cost
functions, for simplicity we will assume that it is a linear
function with constant waiting cost parameter Cw > 0,
i.e. h(t) = Cwt.

We consider two game theoretic formulations overlaid on
the queuing system. First, we consider the game in which
arriving customers can view the queue length and then decide
whether or not to join or balk. We refer to this game as the
free observation queue game. This setting represents a ideal
situation where the entire state information is available to all
of the users, which is not currently achievable in practice.
In the second game, we consider the setting where arriving
customers do not a priori know the queue length. Instead,
they choose to either balk, join without knowing the queue
length, or pay a price to observe the queue after which they
balk or join. We refer to this game as the costly observation
queue game.

III. FREE OBSERVATION QUEUING GAME

We first consider the observable queue game in which
arriving customers know the queue length and choose to join
by maximizing their utility which is a function of the reward
for having parked and the cost of circling and paying for
parking. The nominal expected utility of an arriving customer
to the system in state k is ↵k = R�wk where R > 0 is the
reward for parking. The total expected utility of a customer
arriving to the system in state k is given by

�k = ↵k � Cp

µ = R � Cw(k+1)
µc � Cp

µ (4)

where Cp is the cost for parking. If the customer balks, the
expected utility is zero.

It can be easily verified that the sequence {↵k} is decreas-
ing and as is {�k}. Furthermore, the optimal strategy for a

customer finding the queue in state k and deciding whether
or not to join by maximizing their expected utility is to join
the queue if and only if �k � 0. In this case, if the decision
to join the queue depends on the customer optimizing their
individual utility, then the system will be a M/M/c/nb where

nb =
j

Rµc�Cpc
Cw

k
(5)

is the balking level and is determined by solving �nb�1 �
0 > �nb

. Let x denote the strategy of an arriving customer
and suppose x 2 {j, b} where j represents joining and
b represents balking. Hence, the equilibrium strategy for
customers is

x =

⇢
j, 0  k < nb

b, otherwise (6)

The socially optimal strategy, on the other hand, is deter-
mined by maximizing social welfare. For a M/M/c/n queue,
the total expected utility per unit time obtained by the
customers in the system is given by

Usw(n) = �
Pn�1

k=0 pk(n)�k (7)

Theorem 1 ( [11, Theorem 1]): There exists nso maxi-
mizing Usw(n) and nso  nb so that Usw(nb)  Usw(nso).

Ideally incentivize drivers to close the gap between the
social optimum and the user-selected equilibrium. In order
to obtain the socially optimal balking rate nso we can adjust
the price for parking Ĉp = Cp + �Cp.

Proposition 1: The pricing mechanism Ĉp that achieves
the socially optimal balking level nso is determined by
solving ↵nso

< Ĉp/µ  ↵nso�1.
Proof: The goal is to find �Cp such that nso is the

balking rate. Let the reward under the new price of parking
Ĉp = Cp + �Cp be

�̂k = R � Cw(k+1)
µc � Cp+�Cp

µ (8)

We know that nso will be the balking rate if and only if
�̂nso�1 � 0 > �̂nso

. Hence,

�̂nso�1 = R � Cw(nso�1)
µc � Cp+�Cp

µ > 0 (9)

� R � Cwnso

µc � Cp+�Cp

µ (10)

Rearranging, we get ↵nso
< Ĉp/µ  ↵nso�1.

A. Congestion–Limited Balking Rate

For many municipalities, congestion is a primary ob-
jective. Hence, we consider the problem of designing the
balking rate to achieve a particular level of parking–related
congestion. In order to meet this objective, we can adjust
the price of parking by selecting �Cp so that the balking
level nb, being the number of cars in the queuing system
after which arriving customers decide to balk, is set to be
the desired number of vehicles ncl equaling some percentage
of the total volume over the period of interest.

Proposition 2: The pricing mechanism Ĉp that achieves
the congestion–limited balking level ncl is determined by
solving ↵ncl

< Ĉp/µ  ↵ncl�1.
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The above proposition is proved in the same way as Propo-
sition 1; hence, we omit it.

Note that the value of ncl may not be equal to nso

since the objectives that produce these values may not be
aligned. Thus, designing the price of parking to maintain
a certain level of congestion in a city may not be socially
optimal. Similar results have been shown in the classical
queuing game literature with regards to designing a toll that
maximizes revenue (see, e.g., [11, Section 6]).

Proposition 3: If ncl  nso or ncl > nso, Usw(ncl) 
Usw(nso). Furthermore, if ncl  nso, then Usw(ncl) =
Usw(nso).
The proof of the above proposition is due to the fact that
nso is the maximizer of Usw. It tells us that selecting the
balking rate to limit congestion may result in a decrease in
social welfare.

Proposition 4: If ncl  nb, where nb is the user-selected
balking rate, then Usw(nb)  Usw(ncl) and vice versa.

Proof: The result is implied by the fact that that Usw(n)
is unimodal, i.e. Usw(n) � Usw(n � 1)  0 implies that
Usw(n + 1) � Usw(n) < 0. Barring a little algebra, this is
almost trivially true since {�k} is a decreasing sequence;
indeed,

Usw(n + 1) � Usw(n) =⇢Dn�1

Dn+1
(Usw(n) � Usw(n � 1))

� dn�1

Dn+1
(�n�1 � �n) (11)

Since Usw(n)�Usw(n� 1)  0 by assumption and {�k} is
decreasing, Usw is unimodal.

The preceding propositions tell us that we can design the
balking level by adjusting the price to match a particular
desired level of congestion, we must be careful about how
this level of congestion is selected since will impact social
welfare. In particular, selecting ncl will result in a decrease
in the social welfare as compared to the socially optimal
balking rate; on the other hand, it can result in an increase
in social welfare if selected to be less than the user-selected
balking rate nb.

B. Example: Off-Street vs. On-Street Parking

Suppose customers have two alternatives. They can either
choose on-street parking by selecting to enter a M/M/c/n
queue as above with service time 1/µ or they can choose off-
street parking which we model as a M/M/1 queue (infinitely
available spots) with expected service time per customer 1/µ.
We assume the reward R is the same for both cases. The
utility for off-street parking is

Uoff = R � Coff

µ (12)

where Coff is the cost for off-street parking per unit time.
The utility for joining the on-street parking queue is

Uon(k) = R � Con

µ � Cw(k+1)
cµ (13)

where Con is the cost per unit time for on-street parking, Cw

is the cost per unit time for waiting in the queue (circling
for parking), and k is the state of the queue. In essence,

we consider that, when a customer balks, they choose off-
street parking which represents the outside option. Hence,
we can determine the rate at which people choose off-street
in the same way as we determined the balking rate above. In
particular, we find the off-street balking level noff for which
Uon(noff � 1) � Uoff > Uon(noff ). Hence, we have that

noff =
j
c

Coff�Con

Cw

k
. (14)

IV. COSTLY OBSERVATION QUEUING GAME

We now relax the above framework so that arriving
customers do not observe the queue length without paying
a price. More specifically, suppose now that we have a
M/M/c/n queue and that when customers arrive they can
either balk, join, or pay a cost to observe the queue length
after which they decide to balk or join. For on-street parking
where there is an smart phone app to which a customer can
pay a subscription fee to gain access to information or choose
not to, this model makes sense. We take the theoretical model
from [12].

Assume that each customer chooses to observe the queue
with probability Po at a cost Co, balks without observing
with probability Pb, and joins with out observing with
probability Pj . We use the notation P = (Po, Pb, Pj) 2 �2

for the strategy of arriving drivers where �2 = {P =
(Po, Pb, Pj)| Pi � 0, i 2 {o, b, j}, Po +Pj +Pb = 1} is the
strategy space, i.e. the 2–simplex. The effective arrival rate
for this queue is then

�̃ =

⇢
(1 � Pb)�, k < nb

Pj�, k � nb
(15)

where k is the queue length and nb = bRµc�Cpc
Cw

c is the
selfish balking level for the observable case. Of course, as
before, we assume that nb � 1 to avoid the trivial solution
where Pb = 1 is a dominant strategy. In addition, we assume
n � nb > c since if c  n < nb then users would be forced
to balk n and we would just replace nb in the above equations
with n. The only other case is n < c  nb and it is non-
sensical since c is the number of servers. We remark that if
Co = 0, then the game reduces to the observable game since
Po = 1. Hence, we investigate the case when Co > 0.

The stationary probability distribution is as before (see
(1)) except we use the effective traffic intensity ⇢ = �̃

cµ . In
particular, we write the balance equations

(1 � Pb)�pn
k = (k + 1)µpn

k+1, 0  k < c (16)
(1 � Pb)�pn

k = cµpn
k+1, c  k < nb (17)

Pj�pn
k = cµpn

k+1, nb  k  n (18)

and we let ⌘ = Pj⇢, ⇠ = (1 � Pb)⇢. Then,

pn
k =

8
><
>:

ck⇠k

k! pn
0 , 0  k < c

cc⇠k

c! pn
0 , c  k < nb

⌘k�nb⇠nb cc

c! p
n
0 , nb  k  n

(19)

so that

pn
0 =

⇣Pc�1
k=0

(c⇠)k

k! +
Pnb�1

k=c
cc⇠k

c! + ⇠nb cc

c!
1�⌘n�1�nb

1�⌘

⌘�1

(20)
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Note that we now use the more compact notation pk(n) ⌘ pn
k

and similarly, we use the notation U(n) ⌘ Un for utilities.
Once the customer knows the queue length then their

reward is the same as in the observable case, i.e. �k =
R � wk � Cp/µ. However, since they do not know a priori
the queue length, the customer must make the decision as to
joining, balking, or observing by maximizing their expected
utility.

The utility for observing the queue is given by

Un
o (P ) =

Pnb�1
k=0 pn

k�k � Co (21)

= pn
0

h ⇣
R � Cp

µ

⌘⇣Pc�1
k=0

ck⇠k

k! +
Pnb�1

k=c
cc⇠k

c!

⌘

� Cw

cµ

⇣Pc�1
k=0

ck⇠k(k+1)
k! +

Pnb�1
k=c

cc⇠k(k+1)
c!

⌘ i
� Co,

(22)

the utility for joining without observing is given by

Un
j (P ) =

Pn�1
k=0 pn

k�k (23)

= pn
0

h ⇣
R � Cp

µ

⌘⇣Pc�1
k=0

ck⇠k

k! +
Pnb�1

k=c
cc⇠k

c!

+
Pn�1

k=nb
⌘k�nb⇠nb cc

c!

⌘
� Cw

cµ

⇣Pc�1
k=0

ck⇠k(k+1)
k!

+
Pnb�1

k=c
cc⇠k(k+1)

c! +
Pn�1

k=nb
⌘k�nb⇠nb cc(k+1)

c!

⌘i
,

(24)

and the utility for balking is Un
b (P ) ⌘ 0.

Proposition 5: A symmetric, mixed Nash equilibrium ex-
ists for the game (Un

o , Un
b , Un

j ).
The above proposition is a direct consequence of Nash’s
result for finite games [13]. On the other hand, if we were to
consider a queue where n ! 1 (i.e. with an infinite number
of players), then Nash’s result would no longer hold. This
framework is explored in the working paper [12].

Customers are assumed to be homogeneous which is to
say they all have the same utility function. In particular,
let us use the notation ui(P ) =

P
k2{o,b,j} PkUn

k (P ) for
the expected utility of player i as a function of the mixed
strategy P = (Po, Pb, Pj) where Pk = 1

n

Pn
i=1 P i

k and
P i = (P i

o, P
i
b , P

i
j ) denotes the strategy of player i. Then

ui(P ) = uj(P ) for i, j 2 {1, . . . , n}. Thus, we seek a
symmetric Nash equilibrium which means that it is a best
response against itself.

Definition 1: A {P i| P i 2 �2}n
i=1 is a symmetric Nash

equilibrium if P i = P j for all i, j 2 {1, . . . , n}.
Depending on the relative values of the utility functions
Un

b , Un
j and Un

o , an equilibrium (Po, Pj , Pb) satisfies

Po = 1, Pb = Pj = 0, Un
o > max{Un

j , Un
b } (25a)

Pb = 1, Po = Pj = 0, Un
b > max{Un

o , Un
j } (25b)

Pj = 1, Po = Pb = 0, Un
j > max{Un

o , Un
b } (25c)

Po = 0, 0  Pj , Pb  1, Un
b = Un

j > Un
o (25d)

Pj = 0, 0  Po, Pb  1, Un
b = Un

o > Un
j (25e)

Pb = 0, 0  Pj , Po  1, Un
j = Un

o > Un
b (25f)

0  Pb, Pj , Po  1, Un
o = Un

j = Un
b (25g)

Using the above equations and for the purpose of computing
the Nash equilibrium, we adapt the best response algorithm

in [12] to the case where the utility of the outside option
Ub—which may be balking to other modes of transit or
selecting off–street parking—is not necessarily non-zero (see
Algorithm 1). We conjecture that the Nash equilibrium is
unique and empirically observe this in the simulations. This
conjecture is true when the number of players is infinite and
Ub = 0 as shown in [12].

Algorithm 1 Best Response Algorithm
1: function GETBESTRESPONSE(Po, Pb, Pj , ", �, �)
2: while |P ⇤

o � Po| + |P ⇤
b � Pb| < �

3: Uj  Un
j (Pj , Po), Uo  Un

o (Pj , Po)
4: if Uo > max{Uj , Ub} + ":
5: (P ⇤

o , P ⇤
b , P ⇤

j ) (1, 0, 0)
6: elif Uj > max{Uo, Ub} + "
7: (P ⇤

o , P ⇤
b , P ⇤

j ) (0, 0, 1)
8: elif Ub > max{Uo, Uj} + "
9: (P ⇤

o , P ⇤
b , P ⇤

j ) (0, 1, 0)
10: elif |Uo � Ub| < " & min{Uo, Ub} > Uj + "
11: (P ⇤

o , P ⇤
b , P ⇤

j ) (Po/(Po + PB), Pb/(Po + Pb), 0)
12: elif |Uj � Ub| < " & min{Uj , Ub} > Uo + "
13: (P ⇤

o , P ⇤
b , P ⇤

j ) (0, Pb, 1� Pb)
14: elif |Uj � Uo| < " & min{Uj , Uo} > " + Ub

15: (P ⇤
o , P ⇤

b , P ⇤
j ) (Po, 0, 1� Po)

16: elif any two {|Uj�Ub| < ", |Uo�Ub| < ", |Uj�Uo| < "}:
17: (P ⇤

o , P ⇤
b , P ⇤

j ) (Po, Pb, Pj)
18: end if
19: end while
20: if |P ⇤

o � Po| + |P ⇤
b � Pb| � �:

21: P+
o  (1� �)P ⇤

o + �Po

22: P+
b  (1� �)P ⇤

b + �Pb

23: P+
j  (1� �)P ⇤

j + �Pj

24: (Po, Pb, P j) (P+
o , P+

b , P+
j )

25: end function

On the other hand, the socially optimal strategy
(P so

o , P so
b , P so

j ) 2 �2 is determined by maximizing the
social welfare which is given by

Un
so(P ) = PjU

n
j (P ) + PoU

n
o (P ) + PbU

n
b (P ) (26)

= Pj�
Pn�1

k=0 pn
k�k + Po�

⇣Pnb�1
k=0 pn

k�k � Co

⌘
.

(27)

As we stated in the previous section, it is well known that,
in general, the social welfare is not maximized by the Nash
equilibrium.

A. Example: On-Street vs. Off-Street Parking

We now consider that the balking option is to select off-
street parking as we did in Section III-B. In particular, we
define Un

b = Uoff = R � Coff/µ. The Nash equilibrium
can be computed using Algorithm 1 using Un

b = Uoff =
R � Coff/µ instead of Un

b = 0. On the other hand, the
social welfare is now given by

Un
so(P ) = PjU

n
j (P ) + PoU

n
o (P ) + PbU

n
b (P ) (28)

= Pj�
Pn�1

k=0 pn
k�k + Po�

⇣Pnb�1
k=0 pn

k�k � Co

⌘

+ Pb�
⇣
R � Coff

µ

⌘
. (29)

In Figure 1, we show the Nash equilibrium and the socially
optimal strategy.
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Fig. 1. Nash and socially optimal equilibria. The game we consider is
on-street parking vs. off-street parking and we varied ⇢ = �

cµ
by keeping

µ = 1/120 and c = 30 constant and allowing � 2 [0.025, 0.225]. The
other parameter values are Cp = 0.05, Co = 3.85, R = 95, Cw = 1.5,
n = 100, Coff = 0.962. The social welfare is consistently greater than
the Nash induced welfare for all values of Co as expected.

Fig. 2. Average wait time (proxy for congestion) with respect to the
exogenous arrival rate � 2 [0.6, 1.3] and fixed service rate per blockface
(c ⇤ µ = 1.0) plotted against the average block face utilization (proxy
for occupancy) for a three node queue–flow network with arrivals injected
at all three nodes (green) and only at two nodes (blue). There is a distinct
difference in the occupancy vs. congestion curves depending on the network
structure and average waits grow unboundedly as ⇢ ! 1.

V. QUEUE–FLOW NETWORK SIMULATIONS

To examine the congestion–occupancy relationship as a
function of network topology and information access among
other factors, we constructed a queue–flow network simula-
tor1. The simulator constructs a syncrhonized list of block-
face (drivers in service) and street (drivers waiting/circling)
timers linked according to the street topology.

A. Congestion vs. Occupancy

The congestion–occupancy relationship is an important
one to understand when it comes to designing the price
of parking or information aimed at reducing congestion.
Many municipalities and researchers design pricing schemes
to target a single occupancy level—typically %80—for all
blockfaces in a city despite network topology. In Figure 2,
we simulate a three block queue–flow network and show that
the congestion–occupancy relationship can be drastically dif-
ferent depending on how many nodes are treated as sources
for injections. In particular, the upper bound for utilization
(before wait time exponentially increases) for the 3-node
injection case is around 88% while the 2-node injection case
is around 65%.

1https://github.com/cpatdowling/net-queue

Fig. 3. (upper) Average wait time and (lower) average blockface utilization
as a function of ⇢ = �

cµ
where c = 30 and µ = 1/120 are fixed and

� 2 [0.025, 0.225] for a three node system. The other parameter values are
Cp = 0.05, Co = 3.85, R = 95, Cw = 1.5, n = 100, Coff = 0.962.
The Nash equilibrium and the socially optimal equilibrium varies with ⇢ and
is depicted in Figure 1. The discontinuity in the wait time for Nash around
⇢ = 0.8 is due to the fact that at that point the probability of balking Pb

becomes non-zero (see Figure IV).

B. Costly Observation Queuing Game Simulations

Coupling the queue-flow network with the game theoretic
models of the previous sections, we simulate the queueing
game and its impact on network flow (average wait time) and
on-street parking utilization (occupancy). Given a queue-flow
network topology, for simplicity, we assume that each of the
queues has the same service rate µ. In addition, we suppose
that the total number of parking spots across all queues in
the network is c, the arrival rate to the queuing network is
�, and the capacity of queue-flow network is n. This allows
us to model the whole queuing system as a M/M/c/n queue.

We execute our simulation as follows. First, we determine
the equilibrium of the game (resp. the socially optimal
strategy) and then, we use the simulator described above to
determine the average wait time and utilization. The game
only effects the arrival process of the queue–flow network;
once arriving drivers enter the network, the queue–flow
simulator determines the drivers impact on the system and
the wait time they experience. Given a strategy (Po, Pb, Pj),
we sample from a Poisson distribution with parameter 1/� to
determine the arrival time of the next driver. Then, we sample
from the distribution determined by (Po, Pb, Pj) to decide if
the arriving driver will balk, join without observing, or pay
to observe. If the driver balks, then we discard this arriving
car. If the driver joins without observing, then we determine
which node the driver enters by randomly choosing (using
a uniform distribution) a queue in the network. If the driver
pays to observe, then we examine the length of each queue
in the system and the driver joins the queue with the shortest
length as long as it is less than the balking rate.
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On-Street Parking vs. Other Modes of Transit Type (Po, Pb, Pj) Utilization Avg. Wait Welfare
� = 1/5, Co = 0.25, R = 75, Cw = 0.8, Cp = 0.05 SO (0.00, 0.58, 0.42) 33.2% 0.002 2.80

N (0.85, 0.13, 0.02) 69.3% 0.359 0.00
� = 1/4.85, Co = 0.5, R = 75, Cw = 0.75, Cp = 0.05 SO (0.00, 0.56, 0.44) 34.9% 0.002 3.02

N (0.84, 0.09, 0.07) 77.9% 0.901 0.00
� = 1/4.5, Co = 2.0, R = 75, Cw = 0.5, Cp = 0.075 SO (0.00, 0.4, 0.6) 52.3% 0.04 4.27

N (0.55, 0.00, 0.45) 88.0% 3.69 2.68

On-Street vs. Off-Street Parking Type (Po, Pb, Pj) Utilization Avg. Wait Welfare
� = 1/4.5, Co = 3.85, R = 65, Cw = 1.5, Coff = 0.962, SO (0.47, 0.19, 0.34) 69.9% 1.99 6.58
Cp = 0.05 N (0.49, 0.00, 0.51) 84.0% 7.77 1.85
� = 1/4.75, Co = 3.85, R = 65, Cw = 1.5, Coff = 0.962, SO (0.5, 0.14, 0.36) 70.6% 2.23 9.23
Cp = 0.05 N (0.53, 0.00, 0.47) 81.0% 5.96 7.19

TABLE I
QUEUE–FLOW NETWORK GAME SIMULATION RESULTS: FOR EACH OF THE SIMULATIONS WE SET THE TOTAL NUMBER OF PARKING SPACES TO BE

c = 30, THE AVERAGE PARKING DURATION IS 120 MINUTES (µ = 1/120) WHICH IS CONSISTENT WITH THE SEATTLE DEPARTMENT OF

TRANSPORTATION DATA. WE USE THE SHORTHAND SO FOR SOCIALLY OPTIMAL AND N FOR NASH.

Table I contains the results of simulations for both the
costly observation game simulations for the costly observa-
tion queuing game and the on-street vs. off-street example.
The social welfare is always higher than the Nash welfare,
as expected. The more interesting result is that the utilization
rate (occupancy) and average wait time (time spent circling)
are always less under the socially optimal strategy than
the Nash equilibrium. These are metrics that are typically
used by transportation planners. Moreover, in Figure 3, we
show the result of simulating both the Nash equilibrium
and the socially optimal strategy for various values of the
traffic intensity ⇢ (holding all other parameters fixed). These
simulations are for the same games depicted in Figure 1. As
the traffic intensity increases, we see that both the Nash and
socially optimal utilization increase almost linearly with the
Nash utilization remaining greater. Again, what is interesting
is that by metrics (wait time and occupancy) other than the
social welfare the Nash performance is also worse than the
socially optimal solution.

Another somewhat surprising finding is that only partial
information availability amongst the users—as seen in Ta-
ble I and Figure 1 where Po 6= 1 for the socially optimal
solution—is required to increase social welfare. Moreover, it
seems the socially optimal equilibrium strategy requires less
information availability. From a municipality’s perspective,
this is a useful result when designing a socially optimal
parking infrastructure. Not everyone will know information
about parking availability in the first place (e.g. tourists vs.
residents).

VI. DISCUSSION AND FUTURE WORK

We presented a framework for modeling parking in urban
environments as parallel queues and we overlaid a game the-
oretic structure on the queuing system. We investigated both
the case where drivers have full information—i.e. observe the
queue length—and where drivers have to pay to access this
information. We show only partial information is required
to increase social welfare. Finally, through simulations we
connect the queuing game to a flow network model in
order to characterize wait time (congestion) versus utilization

(occupancy).
We view this paper as the first steps towards formally

understanding the congestion–parking relationship and how
information affects effeciency. We are actively working on a
number of extensions. To name a few: first, we are working
on designing information based mechanisms to close the gap
between the user-selected and socially optimal solution and
reduce the parking-related congestion by targeting balking
rates. Second, we are working on relaxing the homogenity
assumption by considering different preferences such as
walking time to destination and different priority levels such
as disabled placard holders.
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